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Abstract
We report a theoretical study of a single-parameter quantum charge pump in the clean zigzag
graphene nanoribbon (ZGNR) system. By Keldysh Green’s function method, we show that a
pumped current in the ZGNR with an even number of zigzag chains can sharply increase from
zero as the frequency matches the Fermi energy, whereas the pumped charge current is always
absent in the ZGNR with an odd number of zigzag chains as well as the GNR with armchair
edges, it is attributed to the peculiar zero-energy edge state in the ZGNR and the symmetry
breaking of the topologically inequivalent carbon atoms due to the zigzag edges. The pumped
current in the even-ZGNR decreases with the Fermi energy and its direction is determined by
Fermi energy below or above the Dirac point as well as the type of carbon atoms at one edge of
the ZGNR. The two-parameter charge pump in the ZGNR is also discussed and the magnitude
of the pumped current is comparable to the single-parameter pump when the pumping
frequency matches the Fermi energy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the successful realization of a two-dimensional
monolayer of carbon atoms [1–3], graphene has drawn an
explosion of interest in global scientific communities in recent
years. Graphene represents a one-atom-thick layer of carbon
atoms tightly packed into a honeycomb crystal lattice whose
symmetries impose a linear energy–momentum dispersion on
the low-energy quasiparticles, which can be described by
the massless relativistic Dirac equation [4–6]. This linear
dispersion of graphene has led to far-reaching results, e.g.,
the specular Andreev reflection [6] in a normal/superconductor
junction, Klein tunneling [7] related to the chiral nature of
the quasiparticle; other interesting phenomenons include the
unconventional half-integer quantum Hall effect [8, 9], a
bipolar supercurrent [10], and the realization of superlenses by
focusing of electron beams [11].

Graphene has a very long mean-free-path and spin
coherence lengths, as well as a high carrier mobility, that
can be 30 times that in 2DEG of the GaAs heterostructure,
so graphene-based electronic devices are expected to
possess many advantages over traditional Si-based electronic

devices [1–3]. The electron and spin transport property of
graphene has drawn much attention from researchers since
it is important for the fabrication of electronic devices. In
a nanoscale graphene or graphene nanoribbon (GNR), the
transport is expected to depend strongly on whether they
have an armchair or zigzag edge. In a GNR with zigzag
edges (ZGNR), the transport is dominated by the edge
state [12–14] which has been observed in scanning tunneling
microscopy [15]. Due to existence of two edges, the energy
bands of the ZGNR become so flat at the Dirac point that an
energy gap can be induced, and even a spin-polarized state, the
flat energy band at Dirac point leads to a very sharp peak of the
density of states that corresponds to electronic states localized
in the near vicinity of the two edges. The physical origin is
that two topologically inequivalent carbon atoms locate at two
edges so that non-bonding states can form at two edges and
decay from the edge to the inner part of the ZGNR.

The edge state of the ZGNR can be regarded as
spontaneous symmetry breaking between two inequivalent
carbon atoms due to two edges, (compared with bulk graphene,
the ZGNR does not have bulk inversion symmetry), which
may have an effect on the equilibrium transport properties; for
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Figure 1. The schematic structure of a uniform graphene nanoribbon with a zigzag edge. A and B type carbon atoms are at the upper and
lower edge, respectively, the number of the zigzag chains N is even. The shadow part N × M is the scattering region where the pumping
potentials are applied, the other two regions are set as the left and right ideal lead, N is the zigzag chain number along the transverse direction
while M is the unit slice index in the scattering region.

instance, the equilibrium supercurrent in a Josephson junction
comes from the symmetry breaking of the superconductor
macroscopic phase. The quantum parametric pump [16] in a
mesoscopic system at zero bias also comes from the symmetry
breaking of the parameter space. A quantum pump is a device
capable of providing a charge current without any bias and
typically involves the cyclic change of two or more time-
dependent parameters with a nonvanishing phase difference
between them. For a single-parameter charge pump the time-
dependent parameters are in the same phase, it is also probable
to pump out the charge current when the system including the
pumping points does not possess spatial inversion symmetry
(SIS), e.g., Wang et al [17] found that when the device with
a single pumping point possesses SIS, there is no pumped
current, whereas the device without SIS can pump out a
nonzero charge current and the pumped current is proportional
to the frequency squared ω2. Torres [18] employed a magnetic
field to destroy the SIS of a quantum ring device and in that
case the single-parameter charge pump can work.

Since the edge state in the ZGNR reflects the symmetry
breaking between two inequivalent carbon atoms (say, one
edge is composed of A carbon atoms and the other edge
must be from B carbon atoms as shown in figure 1), it is
worth studying the charge pump effect in the ZGNR system,
especially, the single-parameter charge pump. Thus in this
work, we study the single-parameter pump in a finite ZGNR
with an even number of zigzag chains in a device as shown
in figure 1, the charge pumping potential can be in principle
realized by a top gate that is capacitively coupled to the
graphene, alternatively, by using the electric field of a surface
acoustic wave [19]. By means of Keldysh Green’s function
method and numerical calculations, we demonstrate that the
pumped charge current is absent in the low pumping frequency
regime and sharply increases as the frequency (ω) matches
the Fermi energy of the system, whereas the pumped charge
current is always absent in the GNR with armchair edges and
the ZGNR with an odd number of zigzag chains since the later
systems remain SIS. The two-parameter charge pump in the
ZGNR is also studied and the magnitudes are comparable when

the frequency matches the Fermi energy. The spin polarization
of the edge state due to Coulomb interaction is neglected, since
it is not expected to lead to charge current polarization.

This paper is organized in the following way. In section 2,
we introduce the quantum parametric pump in the ZGNR and
describe the Keldysh formulae to calculate the pumped current.
In section 3, we present the numerical results and discussions
of the pumped current. A conclusion is drawn in section 4.

2. Model

We consider a uniform ZGNR in figure 1 that consists of a
scattering region and two ideal leads, the pumping potentials
are applied on the scattering region with the size N × M ,
where N is the number of the transverse zigzag chains, M
is the number of longitudinal slices in the scattering region,
and N is taken as an even number since the odd number
ZGNR cannot lead to a pumped current as stated below. The
system is absent of any bias so the electrochemical potential
is equal everywhere. The single-band (π band) tight-binding
Hamiltonian of the ZGNR reads

H0 =
∑

l

εl C
†
l Cl +

∑

〈l,l′ 〉
tll′ C

†
l Cl′ , (1a)

H1 =
∑

i∈S

vi cos(ωt + φi)C
†
i Ci , (1b)

where C†
l(i) (Cl(i)) is the creation (annihilation) operator of

electron at site l(i), εl is the on-site energy, tll′ is the hopping
energy of the electron and 〈l, l ′〉 denotes the summation over
the nearest-neighbor sites; H0 describes the uniform ZGNR
including both the ideal leads and the scattering region. To
keep the discussion general, H1 describes the time-dependent
pumping potentials in the scattering region with different
pumping strengths vi and different phases φi , the summation
over i ∈ S denotes the pumping potentials are confined in
the sample region. In a realistic situation, the potentials with
the frequency ω are in the same phase and strength, φi = φ0

and vi = v0, when a single AC gate voltage is applied to
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the system, thus this device is actually referred to as a single-
parameter quantum pump. When there is a phase difference
between the pumping potentials, it is defined as two-parameter
charge pump in this work. The system considered here is
impurity free and the generalization to the disordered case is
straightforward by including random site energies. We focus
on the time average current flowing in the α = L, R lead, which
is given by (e = h̄ = 1)

Iα = − 1

τ

∫ τ

0
dt

∫
dt1Tr[Gr(t, t1)�

<
α (t1, t)

+ G<(t, t1)�
a
α(t1, t) + h.c.], (2)

where τ is the period of the pumping cycle, the trace is over the
transverse modes of the ZGNR; Gr,a,<(t, t1) are the retarded
(r), advanced (a), and lesser (<) Green’s functions in the
scattering region defined respectively as

Gr(a)
ll′ (t, t ′) = ∓iθ(±t ∓ t ′)〈[Cl(t), C†

l′ (t
′)]〉, (3)

G<
ll′ (t, t ′) = i〈C†

l (t)Cl′ (t
′)〉, (4)

where 〈· · ·〉 denotes the quantum statistic average and θ(±t ∓
t ′) is a step function. �r,a,<

α is the retarded, advanced, and
lesser self-energy from lead α, �<

α = (�a
α − �r

α) fα , fα is
the Fermi Dirac distribution function of lead α, and fL =
fR = f due to the zero bias applied on the system. The self-
energy �r,a

α can be readily evaluated from the surface Green’s
function of the ideal leads that are absent of any scattering
potentials. To simplify our derivation, a perturbation method is
employed to evaluate the Green’s function Gr,a,< in the sample
region and the time-dependent pumping potential H1 is taken
as the perturbed term. In order to obtain the lesser Green’s
function G<, we choose first to work out the Green’s function
in Keldysh space Gk [20] and the following Dyson equation
can be used in the calculation,

Gk(t, t ′) = Gk0(t, t ′)+
∫

dt1Gk0(t, t1)V k(t1)Gk0(t1, t ′)+· · · ,
(5)

where Gk(t, t ′) is the Green’s function in Keldysh space, which
is defined as [21]

Gk(t, t ′) =
(

Gt (t, t ′) G<(t, t ′)
G>(t, t ′) Gt̄(t, t ′)

)
, (6)

where

Gt(t, t ′) = −iθ(t − t ′)〈C(t)C†(t ′)〉 + iθ(t ′ − t)〈C†(t ′)C(t)〉,
(7)

G>(t, t ′) = −i〈C(t)C†(t ′)〉, (8)

and

Gt̄(t, t ′) = −iθ(t ′ − t)〈C(t)C†(t ′)〉 + iθ(t − t ′)〈C†(t ′)C(t)〉
(9)

are the time-order, greater, and anti-time-order Green’s
function, respectively. The perturbation potential V k in the
Dyson equation is also in the Keldysh space defined as

V k(t) =
(H1 0

0 −H1

)
. (10)

Here the time-order and anti-time-order components take the
plus and minus perturbation potential, whereas the other
two components are zero because, as in most cases, the
perturbation potential is instantaneous. The four component
Green’s functions of Gk are not fully independent and they
have relations [21] such as

Gt = G< + Gr, (11)

Gt̄ = G< − Ga, (12)

and
G> = Gt − Ga. (13)

The unperturbed Green’s function Gk(r)0 can be easily worked
out since there is no bias and no pumping potentials, i.e.,
Gr0(E) = 1/(E + i0+ − H0) and H0 can be replaced by
the Hamiltonian of the scattering region plus the self-energy
�r from the two leads, since only the Green’s function in
the scattering region is needed to evaluate the current in
equation (2). The unperturbed lesser Green’s function is
given by G<0 = [Ga0(E) − Gr0(E)] f , with f being the
Fermi distribution function, thus the Gk0 can be calculated
by using equations (10)–(12). With these preparations and
straightforward algebra, we obtain the bilinear response of the
pumped charge current in lead α as

Iα = −i
∑

i, j∈S

viv j

4

∫
dε Tr[Γα(ε)X i, j (ε)]

× {[ f (ε + ω) − f (ε)][Gr0
i j(ε + ω) − Ga0

i j (ε + ω)]ei
φi j

+ [ f (ε − ω) − f (ε)][Gr0
i j(ε − ω) − Ga0

i j (ε − ω)]
× e−i
φi j }, (14a)

X i, j
m2,m1

(ε) = Gr0
m2,i (ε)Ga0

j,m1
(ε), (14b)

where the phase difference 
φi j = φi − φ j , the line-width
function � depends on the self-energy: � = i(�r − �a),
and m1(2) are the indices of the transverse sites of a slice in
graphene. This pumped charge formula at a finite frequency is
same as that derived from other methods such as the scattering
method [22, 23]. By using the identity Gr − Ga = −iGr�Ga,
it is not difficult to verify the conservation of the pumped
current as

∑
α Iα = 0. From the formula above, the charge

current stems from the quantum interference effect between
the photon-emission and photon-absorption processes, in the
adiabatic regime ω → 0, the pumped current is proportional to
the pumping frequency, Iα ∼ ω sin 
φi j , so that the single-
parameter pump cannot work and Iα = 0 when 
φi j =
0; while in the nonadiabatic regime ω 	 1/τ , with τ a
characteristic time taken for an electron to traverse the sample,
the single-parameter pump can lead to a nonzero current when
the system does not possess SIS and the photon-emission and
photon-absorption are asymmetric, and I ∼ ω2. Our following
calculations are based on the current formula equation (14)
above.

3. Calculation and discussion

In this section, we present the numerical results of the pumped
current in the ZGNR with the pumping potentials applied
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on the scattering region, and these pumping potentials on
each lattice point are assumed to be identical, with the same
pumping strength and phase. The calculations are carried out
at zero temperature T = 0 K, the sample region in most cases
is taken as a square lattice 20 × 20 (the qualitative results
are independent of the lattice sizes chosen), the site energy
is εl = 0 eV and the hopping energy is t = −3.0 eV, the
strength of the pumping potential is set as vi = 0.01 eV,
that is much smaller than the Fermi energy of graphene to
justify the perturbation theory employed in this work. In the
experiment, the typical concentration of electrons or holes is
around 1013 cm−2, so that the Fermi energy corresponds to an
order of magnitude of 0.1 eV or so. In this range of energy,
the energy dispersion relation of the quasiparticle is linear and
exhibits Dirac behavior.

We first consider the single-parameter pump case, where
there is no phase difference among these time-dependent
pumping potentials. The pumped current Ip in the left lead
(α = L) is plotted in figure 2 as a function of the pumping
frequency ω for different Fermi energies. When the pumping
frequency is less than the Fermi energy ω < EF, the pumped
current is almost vanishing; when the frequency increases to
ω = EF, the pumped current rapidly increases to a maximum
and then begins to damp. For different EF, the damping curves
with ω > EF overlap. The current for the single-parameter
pump 
φi j = 0 is an even function of the frequency ω,
Ip(ω) = Ip(−ω), which can be seen from the current formula
of equation (14). The pumped current direction is determined
by the Fermi energy being above or below the Dirac point,
Ip(EF) = −Ip(−EF) can be exactly verified as the symmetric
valence and conduction band is considered for the ZGNR,
which is related to the fact that the pumped current stems from
the quantum interference between the photon-absorption and
photon-emission, and the carrier is changed from an electron
to a hole (quasiparticle) when Fermi energy is lowered from
the conduction band to the valence band, in other words, the
pumped current direction is different for n-doped and p-doped
ZGNRs.

The nonzero charge current in figure 2 is attributed to
the peculiar zero-energy edge state in the ZGNR and the
symmetry breaking between A and B carbon atoms at the
two edges of the ZGNR. Although there are no impurities or
static potential in the sample region where the time-dependent
pumping potentials locate, and the unperturbed system is a
uniform ZGNR possessing translational symmetry along the
longitudinal direction, the inequivalent A and B carbon atom at
the edges can lead to the ZGNR with an even number of zigzag
chains N lacking SIS, which can be seen from the inversion
operation of the scattering region over the central point of the
device or the rotation operation by π around the normal of
graphene. It is emphasized that when the device is rotated
along the longitudinal direction by π , the system remains
invariant and one cannot realize an exchange of A carbon and
B carbon atoms. From this symmetry analysis, the ZGNR
with an odd number of zigzag chains cannot lead to a pumped
current, since the spatial structure of the device keeps invariant
under the central inversion operation. As a matter of fact, we
have also checked the single-parameter pump in another typical

Figure 2. The dependence of the pumped current Ip on the pumping
frequency ω for the single-parameter charge pump in the ZGNR.
Different curves correspond to different Fermi energies as noted in
the panel. The scattering region size is 20 × 20, the strength of the
pumping potential is set as vi = 0.01 eV.

GNR with armchair edges, and found there is no pumped
current, which can also be explained from similar symmetry
analysis. This structurally inequivalent property of the ZGNR
can lead to a very different transport behavior with an even or
odd number of zigzag chain, which was referred to as the odd–
even effect of the ZGNR in the literature [24–26], e.g., the
Andreev reflection in a superconductor/ZGNR junction with
an even number of zigzag chains can be greatly suppressed in
contrast to that of an odd number of zigzag chains [24].

In order to clarify the sharp increase of Ip at EF, we
re-express the current formula of a single-parameter pump
(equation (14)) at zero temperature as

Iα = i
∑

i, j∈S

viv j

4

∫ EF

EF−ω

dε Ai j (ε)

Ai j(ε) = Tr[Γα(ε)X(ε)(G0r
i j (ε + ω) − G0a

i j (ε + ω))

− Γα(ε + ω)X(ε + ω)(G0r
i j (ε) − G0a

i j (ε))].

(15)

Since the density of states around the around Dirac point
is almost zero except for the edge state at E = 0, as shown in
the inset of figure 3, the integral variable A(ε) = ∑

i j Ai j(ε)

is only nonzero when the integrand is considered in this energy
region. Hence, a nonzero charge current can be pumped out
only when the frequency matches the Fermi energy ω ∼ EF

from the lower limit of the integral in the equation above,
therefore Ip exhibits an abrupt increase when ω = EF in
figure 2. As EF is much closer to the Dirac point, the maximum
of Ip is much larger, since in the variable A(ε) (equation (15))
the multiple factors from the [EF − ω, EF] and [EF, EF + ω]
regions become larger as EF → 0. The magnitude of Ip at
ω = EF is determined by the broadening of the edge state in
the energy gap, which is in turn determined by the impurity
level in the ZGNR, so that it is expected that a cleaner material
should lead to a larger pumped current. Since the variable A(ε)

decreases with ω as seen in figure 3, Ip will decrease as ω > EF

in figure 2. For different Fermi energies, the damped curves

4
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Figure 3. The integral variable A(ε) in equation (15) as a function of
the energy E for different pumping frequency ω. The density of
states for a unit slice in the ZGNR is plotted in the inset.

of Ip overlap with each other when ω > EF, this originates
from the fact that the integrand A(ε) peaks at E = 0, and the
whole peak contribution to the integration is fixed as ω > EF

no matter what EF is taken.
We proceed to examine the two-parameter charge pump

in the ZGNR, the pumping potentials are assumed only at the
two boundary slices of the sample region, the left one has a
pumping phase φ1 while the right one has a phase φ2. The
charge current Ip is plotted in figure 4 as a function of ω with
the phase difference 
φ = φ1 − φ2. The conspicuous feature
is the sharp increase of Ip at ω = EF, and it resembles the
tendency of the single-parameter pump. At the resonant point,
the pumped currents for both the single- and two-parameter
pump have the same order of magnitude, the 
φ = 0 case
in figure 4 is actually a single-parameter charge pump. The
difference is that Ip with 
φ 
= 0 begins to increase from
ω = 0 and in the adiabatic regime, the Ip is linear in ω;
whereas for 
φ = 0, the Ip is nonzero only when ω is
comparable to EF. For these 
φ 
= 0 cases, the charge
current direction can be also reversed by changing EF > 0 (n-
doped) to EF < 0 (p-doped), which indicates the hole–electron
antisymmetry of the pumped current. The direction of Ip is
certainly dependent on the phase difference 
φ, Ip ∼ sin 
φ

as shown in the inset of figure 4. Since the nongraphene single-
parameter pump results from the breaking of SIS, then the
current direction is determined by the relative position of the
pumping potential to the leads. For the ZGNR case we study
here, the pumped current is determined by the A or B type
carbon atoms at one lateral edge besides the EF locating in
the conduction or valence band, it is noted that A or B carbon
atoms are just a carbon atom and their difference comes from
the topological structure of the actual device, so that some
symmetry operations may not exchange A and B atoms or
reverse the current direction.

In the calculations above, the Fermi energy EF is chosen
in the energy gap, i.e., it is smaller than the first nonzero
transverse energy level. The reason is the weakness of the
photon energy h̄ω that can lead to |EF| < |ω|, for the frequency

Figure 4. The dependence of the pumped current Ip on the frequency
ω of the two-parameter charge pump in a ZGNR for different phase
differences. In the inset, the pumped current is presented as a
function of the phase difference 
φ.

ω ∼ 1 GHz the photon energy is about 10−2 meV, so that the
resonant point ω = EF should usually occur in the energy gap
of the ZGNR. In fact, the energy gap for a nanoscale ZGNR
is comparatively larger than the usual Fermi energy, e.g., a
ZGNR with the transverse width 30 nm has an energy gap
about 0.1 eV, this is estimated from the energy gap formula

E = tπ

N+1/2 , with N the number of the transverse zigzag
chains [14]. Therefore, only the edge state at E = 0 is
considered to contribute to the pumped current in our scheme.
Relatively speaking, the experimental realization of a single-
parameter charge pump is easier than a two-parameter pump,
using either a single AC top gate capacitively coupled to the
ZGNR or the electric field of the surface acoustic wave.

Although we consider a clean ZGNR, the weak disorder is
not expected to suppress the pumped current by much since
the edge state can survive in the weak disorder. However,
our findings are much more conspicuous in a cleaner ZGNR
because of the lesser broadening of the zero-energy edge
state, moreover, the single-parameter pump requires the Fermi
energy much closer the Dirac point to satisfy |ω| > |EF|,
thus a lesser doped ZGNR is needed. The key features of
the pumped current by a single-parameter pump in a ZGNR
are the abrupt increase at ω = EF and the reversal of current
direction by changing EF across the Dirac point, which may
have potential applications in quantum information technology,
e.g., the current Ip can readily be tuned between so-called
on and off states by changing the Fermi energy EF or the
frequency ω to match each other. From this perspective, the
single-parameter charge pump in the ZGNR is more intriguing
than the two-parameter charge pump.

4. Summary

In summary, we have investigated the single-parameter charge
pump in a clean ZGNR with no external bias. It was found
that a pumped current may flow in a ZGNR with an even
number of zigzag chains, whereas it is absent in a ZGNR with
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an odd number of zigzag chains as well as in a GNR with
armchair edges. The nonzero current in the even-ZGNR can
be pumped out only when the pumping frequency matches the
Fermi energy of system, and then the pumped current exhibits
a sharp increase. The nonzero pumped current results from the
zero-energy edge state in an even-ZGNR and the spontaneous
symmetry breaking of two inequivalent carbon atoms at the
two edges. The current direction can be reversed by alternating
the carbon atoms at the two edges or tuning the Fermi energy
across the Dirac point. The two-parameter charge pump in
the ZGNR retains the main character of the single-parameter
pump, and the magnitudes of the two pumped currents are
comparable when the pumping frequency matches the Fermi
energy. Our findings may be helpful to develop graphene-based
electronic devices.
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